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An approximation in Zachariasen's [Theory of X-Ray Diffraction in Crystals (1945). New York: John Wiley] treatment 
of X-ray diffraction from a perfect plane-parallel crystal in the Bragg case is pointed out and eliminated. The corres- 
ponding unapproximated expression for the transmitted beam is also given. It transpires that Zachariasen's approxi- 
mation leads to significant errors for 'thin' crystals (i.e. those for which the path length is less than or of the order of the 
extinction length). Some illustrations of the nature of the error are given. 

In the course of some calculations it has come to our notice 
that there is an unnecessary approximation in Zachariasen's 
(1945) equation (3.139), which, from the text, might be 
thought to give the general solution for the diffraction of 
X-rays from a perfect plane-parallel crystal in the Bragg case, 
treated within the framework of Zachariasen's explicit 
assumptions. The nature of the approximation is such that it 
only leads to significant errors for 'thin' crystals (i.e. those 
for which the path length is less than or of the order of the 
extinction length) and then, apparently only when ~,~ (or F~) 
is non-zero (for a review concerning another unnecessary 
approximation introduced by Zachariasen, see Fingerland, 
1971). 

As Zachariasen's book is widely used as a source for 
results of X-ray dynamical theory and also because, to our 
knowledge, the general solution for the Bragg case has not 
been given in the same convenient form elsewhere, it seems 
worthwhile to present the unapproximated expression for the 
diffracted-beam intensity. In addition, we also give the 
corresponding unapproximated result for the transmitted 
beam, which is not given by Zachariasen. 

Following Zachariasen's notation, we find on substituting 
for x~, x 2, c~ and c 2 in his equation (3.137) that the diffracted 
intensity is given without approximation by 

I H b2lgtttlE[sinEav + sinh2aw] 
- -  = (1) 
Io e D ' 

where the denominator 

D = Iq + zEI -t- {Iq + z2[ q- Izl 2} sinh2 aw 

- {Iq + z21-  Izl 2} sin 2 av + Re(-z* u)sinh(2aw) 

+ Im(z* u) sin(2av), (2) 
while 

u =- v + iw =- (q + z2) uz (3) 

and an asterisk denotes the complex conjugate. 

Expression (1) may be shown to agree with that given by 
Zachariasen but for the question of the signs in the fourth 
and fifth terms in the denominator D. More specifically, 
Zachariasen effectively takes the moduli of these terms. 
Following some careful analysis, we find that, at least for 
the centrosymmetric case, Zachariasen's choice of sign for 
the fourth term is correct, but that his corresponding treat- 
ment of the fifth term in (2) is not valid if 

~,~ F~ 
x = = - -  4= 0, (4) 

~,,~ V,~ 
when the fifth term may become negative. The fifth term in 
(2) only makes a significant contribution for path lengths 
which are less than or of the order of the extinction length 
(i.e. A < zc). 

The transmitted beam intensity is similarly found from 
Zachariasen's equation (3.138) to be 

I ° Iq + z21 exp{--2aflIm(z)} 
Io e D , (5) 

where the asymmetry parameter fl is given by 

b + l  
f l -  with--1 < fl < 1. (7) 

b - 1  
and D is again given by (2). 

In order to illustrate the nature of the error introduced by 
Zachariasen's approximation, we have taken the eentro- 
symmetric case and plotted out diffracted- and transmitted- 
beam rocking curves for various values of the parameters A, 
g, fl and ~¢. Two illustrative examples are presented in Figs. 
1 and 2. 

In calculating the reflectivity R = P,/Po,  we have used the 
standard approximation that P J P o  -- I J Ib l Io ,  which is 
valid for beam widths which are large compared to the depth 
of penetration in the crystal. For the transmissivity T we 
have correspondingly taken T = I°e/I e. The 'Zachariasen 
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estimate' for T was obtained by substituting Zachariasen's 
approximation for D in (5). 

The diffracted- and transmitted-beam rocking curves 
presented in Figs. 1 and 2 show that the present expressions 
based on (2) lead to much smoother behaviour than those 
based on Zachariasen's approximation for D. Furthermore, 
the expected complementary behaviour of T and R is ex- 
hibited by the present results but is not exhibited by those 
based on Zachariasen's approximation. 

It may be noted that Zachariasen's approximation is valid 
for all the cases illustrated in his book, but it is not necessarily 
valid for all cases, whereas (2) will always be correct 
within the framework of Zachariasen's explicit assumptions. 
Moreover, there does not appear to be any good reason for 
making Zachariasen's approximation, since D given by (2) 
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Fig. 1. Reflectivity (R) and transmissivity (T) rocking curves for a 
centrosymmetric crystal in the symmetric Bragg case (,8 = 0) 
plotted against the rocking angle y [defined in equation (3.181) 
of Zachariasen] for A = 0-5, g = --0.1 and x = +0.1. The solid 
curves are the solutions given by equations (1) and (2), while the 
broken curves were obtained by taking Zachariasen's approxi- 
mation for D. 
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Fig. 2. As for Fig. 1 but with equations evaluated for asymmetric 

Bragg case (fl = +0.8) and A = 1.5, g(0) = --0.1 [g(fl) = 
g(0)/(1 - fl2)V2l and x = +0. I. 

is just as easy to evaluate as D in Zachariasen's approxi- 
mation. 

In conclusion, we note that the precise form of thin-crystal 
rocking curves is currently of practical interest. For example, 
Kohra (1972) and his group have measured (virtually 
intrinsic) thin-crystal rocking curves for Si. 
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Application of the matrix intensity equation of X-ray diffraction is discussed for the second problem of extrinsic faults in 
face-centred cubic crystals, discussed by Howard [Acta Cryst. (1977), A33, 29-32]. The second problem is generalized 
to the case that the probability with which inserted layers follow layers of the original crystal differs from that with which 
inserted layers follow previously inserted layers. The Q matrix for the case is obtained and the results of intensity 
calculation are shown. 

Recently, Howard (1977) solved the second problem of 
extrinsic faults in face-centred cubic crystals by the use of the 
difference equation. We can obtain the same results by 
application of the matrix intensity equation of X-ray 
diffraction. Application of the matrix intensity equation to 
growth, growth and deformation, and multiple-deformation 
faults in various close-packed structures was discussed by 
the present author (Takahashi, 1976). Extrinsic faults in 
f.c.c, crystals are equivalent to double-deformation faults. 
Our Q matrix is different from that of Kakinoki & Komura 

(1965). As is well known, the P matrix is a transition 
probability matrix of the Markov process. The original 
definition of the P matrix by Kakinoki & Komura (1965) is 
that the / j  element of the P matrix is the probability of finding 
the layer j after the layer i. That is to say, states are defined 
by kinds of layers in their treatment. States and transition 
probabilities are called complexions and continuing prob- 
abilities, respectively, in this article. Complexions can be de- 
fined by sequences of layers or displacement vectors in the 
matrix intensity equation. If the ith complexion is followed 


